Week	Marking Period 1
1	Course Introduction / Project Discussions / Technology Shop Safety
2	Introduction to Measuring and Hand Tool Usage & Safety
3	Introduction to Problem-Solving and Critical Thinking
4	Introduce Air-Powered Race Car
5	Race car design, specifications, racing format, compressed air, and Laws of Motion
6	Air car design, fabrication shaping, and weighing
7	Air car final assembly, evaluation, and racing
8	Introduce Lego Mindstorms Robotic Problem
9	Design and construction of Bunyan Bot
10	Testing and evaluation of Bunyan Bot
Week	Marking Period 2
11	Lesson 1 - Introduction to Design - Activity 1.1: Foot Orthosis Instant Design Challenge
12	Activity 1.2: A Picture Is Worth a Thousand Words
13	Activity 1.3: How Big Was That Fish?
14	Project 1.4: Investigate the Inside
15	Lesson 2 - Modeling and Statistical Analysis - Activity 2.1: Building Blocks
16	Activity 2.2: Taking Modeling to Another Dimension
17	Activity 2.3: Puzzle Cube Statistical Analysis
18	Lesson 3 - Design Challenge - Activity 3.1: Let's Simulate to Elucidate
19	Activity 3.2: Therapeutic Toy Design

Time Frame	September - Week 1						
		То	pic				
Course Introduction	on / Project Discussion/ T	echi	hology Shop Safet	у			
	Essent	ial	Questions				
 What are t What are t What facili What are t 	 What are the teacher expectations for shop safety? What are the student requirements for shop safety? What facilities are available as resources? What are the emergency procedures for the technology shop 						
	Enduring	Un	derstandings				
Student SaStudent reTeacher re	afety sponsibility esponsibility						
	Alignm	iení	t to NJSLS				
8.2.8.A.5 - Descri and capital contrib	be how resources such as oute to a technological pro	ma duc	terial, energy, infor t or system.	rmati	on, time, tools, people	e,	
	Key Con	cep	ts and Skills				
TechnologTechnolog	y shop safety y shop classroom proced	ures	6				
	Learn	ing	Activities				
Facility toQ&A period	ar and explanation of poword for students	ver to	pols				
	As	sess	sments				
General shop safety testGeneral hand tool safety test							
21st Century Skills							
Creativity	Critical Thinking	X	Collaboration	Х	Communication		
Life & Career Skills	X Information Technology		Media Literacy				

	Interdisciplinary Connections							
• Test taking strategies								
	Technology Integration							
[
Time Frame	Week 2							
		Торіс						

Measuring Systems

Essential Questions

- What two measuring systems are used worldwide?
- What are the standard units of measure?
- What are the metric units of measure?
- What is the importance of measuring accuracy?
- What is the history of developed measuring systems?

Enduring Understandings

- Identifying the two distinct measuring systems
- Understanding units of measure

Alignment to NJSLS

8.2.8.A.2 - Examine a system, consider how each part relates to other parts, and discuss a part to redesign to improve the system.

Key Concepts and Skills

- Measuring accurately to the 1/16th of an inch
- Identifying standard units of measure
- Identifying lineal measuring

Learning Activities

- Making personal measuring device
- Dividing a one inch segment into sixteen parts
- Identifying inches ¹/₂'s, ¹/₄'s, ¹/₈'s, and 1/16th on a ruler

- Measuring with a personal instrument
- Reviewing fractions and division skills
- Measuring Tests 1, 2, and 3

21st Century Skills								
Creativity	X	Critical Thinking		Collaboration		Communication		
Life & Career Skills	X	Information Technology		Media Literacy				
		Interdiscipli	na	ry Connections				
• Math - Fractions and division								
Technology Integration								
Measuring Accuracy								

Time Frame	Week 3
	Торіс
Problem Solving /	Critical Thinking
	Essential Questions
 What skills What is ele What is the 	are necessary for solving technology problems? ementary engineering? e design process?

Enduring Understandings

• The design/engineering process is essential in problem solving

Alignment to NJSLS

8.2.8.C.4 - Identify the steps in the design process that would be used to solve a designated problem.

Key Concepts and Skills

- Identify the seven steps in the problem solving process
- Identify the continuity of the problem solving steps

• Identify the testing and fixing steps as the trial and error method in engineering

Learning Activities

• Paper Towel Activity- Assemble and build the tallest freestanding paper towel tower possible from four sheets of paper and twenty inches of tape

Assessments

• Measuring completed towers with a standard measuring tape while standing

21st Century Skills								
Creativity	X	Critical Thinking	X	Collaboration	х	Communication	Х	
Life & Career Skills		Information Technology		Media Literacy				
Interdisciplinary Connections								
• Measuring accuracy and estimating								

Technology Integration

• Building technology - Foundations and free standing structures

Time Frame	September - Week 4					
	Торіс					
Introduction to Air	-Powered Car Race / Hand Tool Review					
	Essential Questions					
What handWhat hand	t tools are used to layout, cut, and shape an air powered race car? I tool skills are necessary to shape a race car into its final design shape					
	Enduring Understandings					
Hand tools	s can be used in the problem solving process					
	Alignment to NJSLS					

8.2.8.D.3 - Build a prototype that meets a STEM-based design challenge using science, engineering, and math principles that validate a solution.

Key Concepts and Skills

- Understanding mass as a factor in determining car speed
- Weighing the unfinished car as the design processes
- Changing and adjusting finished car design shapes as time permits

Learning Activities

- Sketching two different full size drawings as a design solution
- Cut drill and shape a finished race car body with a low mass
- Assemble the various race car parts for racing competition
- Paint, decorate or wood burn the final race car design

Assessments

- Teacher made grading rubric
- Side by side racing competition

21st Century Skills								
Creativity	X	Critical Thinking	X	Collaboration	X	Communication	Х	
Life & Career Skills		Information Technology	X	Media Literacy				
		Interdiscipli	ina	ry Connections	5			
• Math- Symmetry as part of the finished design								
Technology Integration								

• Video of side by side racing competition in slow motion

Time Frame	September - Week 5-7
	Topic
Air Powered Race	Car
	Essential Questions

- What are the key factors that affect the performance of an air powered race car?
- What skills are necessary to fabricate a finished race car design?

Enduring Understandings

• The design process is a key factor in a successful finished race car

Alignment to NJSLS

8.2.8.D.3 - Build a prototype that meets a STEM-based design challenge using science, engineering, and math principles that validate a solution.

Key Concepts and Skills

- Reviewing and discussing the race car specifications is essential for successful project completion
- Using appropriate hand tools in car fabrication
- Understanding compressed air
- Define friction
- Define aerodynamics

Learning Activities

- Sketching two different full size drawings of race car designs
- Cut out and shape a wedge shaped car blank
- Assemble all race hardware and wheels and axles
- Test and analyze the completed

Assessments

- Evaluate the finished project from a teacher made grading rubric
- Side by side racing competition

21st Century Skills							
Creativity	X	Critical Thinking	X	Collaboration		Communication	х
Life & Career Skills		Information Technology	X	Media Literacy			
		Interdiscipli	na	ry Connections			
• Math - Symmetry, aerodynamics, weight							

Technology Integration

• Student produced video of side by side racing competition in slow motion using student devices.

Time Frame	September - Week 8-10
	Торіс
Lego Mindstorms	: Intro to Mobile Robotics
	Essential Questions
 What is ro What are What mac 	botics? the functions robots can perform? hines and mechanisms are necessary for assembling robots?
	Enduring Understandings
The desig	n/engineering process is essential in understanding how robots perform
	Alignment to NJSLS
 8.2.8.D.2 - Identif (e.g., how the proproblem and reponse notebook. 8.2.8.D.3 - Build engineering, and proproblem 	fy the design constraints and trade-offs involved in designing a prototype totype might fail and how it might be improved) by completing a design rting results in a multimedia presentation, design portfolio or engineering a prototype that meets a STEM-based design challenge using science, math principles that validate a solution.
	Key Concepts and Skills
Simple co	mputer programming - Computer Science
	Learning Activities
 Assemblir Programm Bot" 	ng a motorized functioning robot ning a lego robot for a teacher developed movement problem "The Bunyan
	Assessments
• Teacher m	ade grading rubric for the completed Bunyan Bot Task
	21st Century Skills

Creativity	X	Critical Thinking	X	Collaboration	х	Communication	х
Life & Career Skills		Information Technology	X	Media Literacy			
		Interdiscipl	ina	ry Connections			
• Computer	Sci	ence - programming					
		Technolo	ogy	Integration			
Computer	pro	gramming of motors a	nd r	nechanisms			
Time Frame		4 Weeks - Weeks 11-	14				
			To	opic			
		Lesson 1 - In	ntro	duction to Design			
	Essential Questions						
• How is a	desi	gn process used to eff	ecti	vely develop a desi	ign so	olution that solves a	
problem of	or ac	ddresses a design oppo	rtur	nity?			
What role	do	team norms play in m	akir	ng a collaborative t	eam	more successful	

• Why is accurate measurement, precise dimensioning, and thorough documenting necessary for both mechanical dissection and creative problem solving?

Enduring Understandings

- Collaboration and communication are important for a multi-disciplinary team.
- Sketches are used to document and communicate design ideas with accuracy.
- Accurate measurement, precise dimensioning, and thorough documentation is necessary for both mechanical dissection and creative problem solving.

Alignment to NJSLS

- 8.2.8.A.1 Research a product that was designed for a specific demand and identify how the product has changed to meet new demands (i.e. telephone for communication smart phone for mobility needs).
- 8.2.8.A.2 Examine a system, consider how each part relates to other parts, and discuss a part to redesign to improve the system.
- 8.2.8.A.3 Investigate a malfunction in any part of a system and identify its impacts.
- 8.2.8.A.4 Redesign an existing product that impacts the environment to lessen its impact(s) on the environment.
- 8.2.8.A.5 Describe how resources such as material, energy, information, time, tools, people, and capital contribute to a technological product or system.
- 8.2.8.B.1 Evaluate the history and impact of sustainability on the development of a designed product or system over time and present results to peers.
- 8.2.8.B.2 Identify the desired and undesired consequences from the use of a product or system.
- 8.2.8.B.3 Research and analyze the ethical issues of a product or system on the

environment and report findings for review by peers and /or experts.

- 8.2.8.B.4 Research examples of how humans can devise technologies to reduce the negative consequences of other technologies and present your findings.
- 8.2.8.B.5 Identify new technologies resulting from the demands, values, and interests of individuals, businesses, industries and societies.
- 8.2.8.B.6 Compare and contrast the different types of intellectual property including copyrights, patents and trademarks.
- 8.2.8.B.7 Analyze the historical impact of waste and demonstrate how a product is upcycled, reused or remanufactured into a new product.

Key Concepts and Skills

- Describe and/or analyze moments within a problem-solving process where persistence, iteration, and the positive role of failure played an important role in gaining understanding about a problem or unexpected observation.
- Apply an iterative process to solve a problem or create an opportunity that can be justified.
- Create a physical model or prototype.
- Collaborate and communicate effectively for specific purposes and settings on a diverse and multi-disciplinary team.
- Document a process according to professional standards.
- Describe the role, connections between disciplines, and impact of engineering, biomedical science, and computer science on society.
- Sketch and/or interpret perspective, isometric, and multiview drawings with adequate attention to standards and critical annotations.
- Measure and present values appropriate to standards of accuracy and precision.
- Translate and interoperate between 2D and 3D design representations.
- Analyze and describe design functionality by observation of an artifact.

Learning Activities

- Foot Orthosis Design Activity
- Sketching
- Investigate the Inside Project

- Ongoing daily assessments
- Reflection Table
- Measuring and Unit Conversions Readiness Assessments
- Investigate the Inside Project

21 st Century Skills							
1	Creativity	4	Critical Thinking	~	Communication	4	Colla borat ion

✓ Life & Career Skills ✓ Information Literacy	Media Literacy									
Interdisciplinary Connections English Language Arts Mathematics Science Social Studies 										
Technology Integration NONE										
Time Frame3 Weeks - Weeks 15-17										
	Торіс									
Lesson 2 - Modelin	g and Statistical Analysis									
Essenti	al Questions									
• Why is it important for an engineer to	be aware of the criteria and constraints when									
designing a project?										
How can mathematical modeling help	b designer understand a design?									
• How can computational thinking be a	pplied when developing an engineering solution?									
• How is design testing data used to im	prove design solutions?									
Enduring	Understandings									
• The design process is used to effectiv	ely develop a design solution that solves a problem									
or addresses a design opportunity										
• An engineer must be aware of the crit	eria and constraints when designing a project.									
• Documentation play a critical role in	each step of the design process.									
Alignme	ent to NJSLS									
• 8.2.8.C.1 - Explain how different tear	ns/groups can contribute to the overall design of a									
 Product. 8.2.8 C.2 - Explain the need for optim 	nization in a design process									
 8.2.8.C.2 - Explain the function value 8.2.8 C.3 - Evaluate the function value 	ie and aesthetics of a technological product or									
system, from the perspective of the us	ser and the producer. The application of									
engineering design.										
• 8.2.8.C.4 - Identify the steps in the de	sign process that would be used to solve a									
designated problem.	as of a subsystem that an existing as nort of a system									
 8.2.8.C.5 - Explain the interdependence of a subsystem that operates as part of a system. 8.2.8.C.5.a - Create a technical sketch of a product with materials and measurements 										
labeled.	labeled.									
o.2.o.C.o - Conaborate to examine a f process used to troubleshoot, evaluate the better solution	e and test options to repair the product, presenting									
 8.2.8.C.7 - Collaborate with peers and 	l experts in the field to research and develop a									
product using the design process, data with annotated sketches to record the	a analysis and trends, and maintain a design log developmental cycle.									

• 8.2.8.C.8 - Develop a proposal for a chosen solution that include models (physical, graphical or mathematical) to communicate the solution to peers.

Key Concepts and Skills

- Recognize that models are used to make predictions and/or learn about a phenomenon, situation, or design.
- Apply an iterative process to solve a problem or create an opportunity that can be justified.
- Apply computational thinking to solve problems.
- Apply a mathematical model to represent an authentic situation.
- Construct a computer-generated solid model.
- Measure and present values appropriate to standards of accuracy and precision.
- Translate and interoperate between 2D and 3D design representations.
- Sketch and/or interpret perspective, isometric, and multiview drawings with adequate attention to standards and critical annotations.
- Select and apply tools and technology appropriately to develop solutions, create artifacts, and/or conduct investigations to engineering, biomedical science, and computational problems/needs.
- Collaborate and communicate effectively for specific purposes and settings on a diverse and multi-disciplinary team.
- Describe and/or analyze moments within a process where persistence, iteration, and the positive aspect of failure played an important role in gaining understanding about a problem or unexpected observation.
- Analyze problems or artifacts when developing solutions.
- Construct and communicate informed decisions supported by evidence.

Learning Activities

- Building Blocks
- Taking Modeling to Another Dimension

- Ongoing daily assessments
- Puzzle Cube

21 st Century Skills								
1	Creativity	1	Critical Thinking	1	Communication	1	Collab	
							oration	
1	Life & Career	1	Information		Media Literacy			
-	Skills	-	Literacy					
Interdisciplinary Connections								
• English Language Arts								
	Mathematics							

- Science
- Social Studies

Technology Integration

- GeoGebra
- SketchUp Pro 2017

Time Frame2 Weeks - Weeks 18-19

Topic

Lesson 3 - Design Challenge

Essential Questions

- How do computational solutions improve our society?
- How are modeling and simulation used in various professions?
- Why are teams of people more successful than an individual when solving problems?
- Why is brainstorming, research, and testing important when creating, modifying, or improving a design solution?

Enduring Understandings

- Using the design process, allows you to create all the necessary documentation in each of the steps of the design process.
- Creating a design solution, testing the solution, and analyzing the test data allows the evaluation of solution and, if time permits, revisit the design to improve it.

Alignment to NJSLS

- 8.2.8.D.1 Design and create a product that addresses a real world problem using a design process under specific constraints.
- 8.2.8.D.2 Identify the design constraints and trade-offs involved in designing a prototype (e.g., how the prototype might fail and how it might be improved) by completing a design problem and reporting results in a multimedia presentation, design portfolio or engineering notebook.
- 8.2.8.D.3 Build a prototype that meets a STEM-based design challenge using science, engineering, and math principles that validate a solution.
- 8.2.8.D.4 Research and publish the steps for using and maintaining a product or system and incorporate diagrams or images throughout to enhance user comprehension.
- 8.2.8.D.5 Explain the impact of resource selection and the production process in the development of a common or technological product or system.
- 8.2.8.D.6 Identify and explain how the resources and processes used in the production of a current technological product can be modified to have a more positive impact on the environment.

Key Concepts and Skills

- Apply computational thinking to solve problems.
- Organize, process, and analyze data to understand a real-world situation.
- Use computer models and simulations to study an authentic system.
- Select and apply tools and technology appropriately to develop solutions, create artifacts,

and/or conduct investigations to engineering, biomedical science, and computational problems/needs.

- Describe the role, connections between disciplines, and impact of engineering, biomedical science, and computer science on society.
- Describe and/or analyze moments within a process where persistence, iteration, and the positive aspect of failure played an important role in gaining understanding about a problem or unexpected observation.
- Demonstrate creativity and courage to take risks in proposing designs and describe the value of unique attributes or approaches.
- Analyze problems or artifacts when developing solutions.
- Recognize that models are used to make predictions and/or learn about a phenomenon, situation, or design.
- Identify ethical considerations that must be considered within design requirements, an experimental setup, and/or a process.
- Apply an iterative process to solve a problem or create an opportunity that can be justified.
- Analyze and describe design functionality by observation of an artifact.
- Construct a computer-generated solid model.
- Create a physical model or prototype.
- Measure and present values appropriate to standards of accuracy and precision.
- Translate and interoperate between 2D and 3D design representations.
- Sketch and/or interpret perspective, isometric, and multiview drawings with adequate attention to standards and critical annotations.
- Collaborate and communicate effectively for specific purposes and settings on a diverse and multi-disciplinary team.
- Document a process according to professional standards.
- Construct and communicate informed decisions supported by evidence.
- Demonstrate the ability to manage multiple resources throughout a project.
- Justify decisions and provide rationales when making trade-offs between resources.

Learning Activities

- Let's Simulate to Elucidate Activity
- Decision Matrix
- Design Brief

- Ongoing daily assessments
- Therapeutic Toy Design Project

21 st Century Skills								
1	Creativity	1	Critical Thinking	1	Communication	✓	Collaborati	
							on	

1	Life & Career	~	Information		Media Literacy				
	Skills	-	Literacy						
	Interdisciplinary Connections								
•	English Languag	ge Arts	5						
	• Mathematics								
	• Science								
	 Technology 								
Technology Integration									
	• OpenSim								
	GeoGebra								
	• SketchUp Pro 20	017							